Нохчийн маттахь терхьаш: различия между версиями
Adam (обсуждение | вклад) Нет описания правки |
Adam (обсуждение | вклад) |
||
Строка 42: | Строка 42: | ||
* 1000000 — миллион | * 1000000 — миллион | ||
== История == | == История == | ||
{{main|History of the Hindu–Arabic numeral system}} | |||
<div style="float:right;"> | |||
{| class="wikitable zebra" | |||
|+ Glyphs used to represent digits of the Hindu–Arabic numeral system. | |||
|- | |||
|European <small>(descended from the West Arabic)</small> | |||
|0 ||1 ||2 ||3 ||4 ||5 ||6 ||7 ||8 ||9 | |||
|- | |||
|Arabic-Indic | |||
|٠ ||١ ||٢ ||٣ ||٤ ||٥ ||٦ ||٧ ||٨ ||٩ | |||
|- | |||
|Eastern Arabic-Indic <small>(Persian and Urdu)</small> | |||
|۰ ||۱ ||۲ ||۳ ||۴ ||۵ ||۶ ||۷ ||۸ ||۹ | |||
|- | |||
|Devanagari <small>(Hindi)</small> | |||
|० ||१ ||२ ||३ ||४ ||५ ||६ ||७ ||८ ||९ | |||
|- | |||
|Tamil | |||
| ||௧ ||௨ ||௩ ||௪ ||௫ ||௬ ||௭ ||௮ ||௯ | |||
|} | |||
</div> | |||
The first true written [[positional numeral system]] is considered to be the [[Hindu–Arabic numeral system]]. This system was established by the 7th century in India,<ref name="O'Connor and Robertson">O'Connor, J. J. and Robertson, E. F. [http://www-history.mcs.st-andrews.ac.uk/HistTopics/Arabic_numerals.html Arabic Numerals]. January 2001. Retrieved on 2007-02-20.</ref> but was not yet in its modern form because the use of the digit [[zero]] had not yet been widely accepted. Instead of a zero sometimes the digits were marked with dots to indicate their significance, or a space was used as a placeholder. The first widely acknowledged use of zero was in 876.<ref>{{cite web|url=https://www.ams.org/featurecolumn/archive/india-zero.html |title=All for Nought |work=Feature Column |author=Bill Casselman |author-link=Bill Casselman (mathematician) |publisher=AMS |date=February 2007}}</ref> The original numerals were very similar to the modern ones, even down to the [[glyph]]s used to represent digits.<ref name="O'Connor and Robertson"/> | |||
[[Image:Maya.svg|thumb|left|150px|The digits of the Maya numeral system]] | |||
By the 13th century, [[Western Arabic numerals]] were accepted in European mathematical circles ([[Fibonacci]] used them in his ''[[Liber Abaci]]''). They began to enter common use in the 15th century.<ref>{{Cite web|last=Bradley|first=Jeremy|title=How Arabic Numbers Were Invented|url=https://www.theclassroom.com/how-to-identify-numbers-on-brass-from-india-12082499.html|access-date=2020-07-22|website=www.theclassroom.com}}</ref> By the end of the 20th century virtually all non-computerized calculations in the world were done with Arabic numerals, which have replaced native numeral systems in most cultures. | |||
===Other historical numeral systems using digits=== | |||
The exact age of the [[Maya numerals]] is unclear, but it is possible that it is older than the Hindu–Arabic system. The system was [[vigesimal]] (base 20), so it has twenty digits. The Mayas used a shell symbol to represent zero. Numerals were written vertically, with the ones place at the bottom. The [[Mayas]] had no equivalent of the modern [[decimal separator]], so their system could not represent fractions. | |||
The [[Thai numerals|Thai numeral system]] is identical to the [[Hindu–Arabic numeral system]] except for the symbols used to represent digits. The use of these digits is less common in [[Thailand]] than it once was, but they are still used alongside Arabic numerals. | |||
The rod numerals, the written forms of [[counting rods]] once used by [[China|Chinese]] and [[Japan]]ese mathematicians, are a decimal positional system able to represent not only zero but also negative numbers. Counting rods themselves predate the Hindu–Arabic numeral system. The [[Chinese numerals#Suzhou numerals|Suzhou numerals]] are variants of rod numerals. | |||
{| class="wikitable" style="text-align:center" | |||
|+ Rod numerals (vertical) | |||
|- | |||
! style="width:50px" | 0 | |||
! style="width:50px" | 1 | |||
! style="width:50px" | 2 | |||
! style="width:50px" | 3 | |||
! style="width:50px" | 4 | |||
! style="width:50px" | 5 | |||
! style="width:50px" | 6 | |||
! style="width:50px" | 7 | |||
! style="width:50px" | 8 | |||
! style="width:50px" | 9 | |||
|- | |||
| [[Image:Counting rod 0.png]] | |||
| [[Image:Counting rod v1.png]] | |||
| [[Image:Counting rod v2.png]] | |||
| [[Image:Counting rod v3.png]] | |||
| [[Image:Counting rod v4.png]] | |||
| [[Image:Counting rod v5.png]] | |||
| [[Image:Counting rod v6.png]] | |||
| [[Image:Counting rod v7.png]] | |||
| [[Image:Counting rod v8.png]] | |||
| [[Image:Counting rod v9.png]] | |||
|- | |||
! style="width:50px" | –0 | |||
! style="width:50px" | –1 | |||
! style="width:50px" | –2 | |||
! style="width:50px" | –3 | |||
! style="width:50px" | –4 | |||
! style="width:50px" | –5 | |||
! style="width:50px" | –6 | |||
! style="width:50px" | –7 | |||
! style="width:50px" | –8 | |||
! style="width:50px" | –9 | |||
|- | |||
| [[Image:Counting rod -0.png]] | |||
| [[Image:Counting rod v-1.png]] | |||
| [[Image:Counting rod v-2.png]] | |||
| [[Image:Counting rod v-3.png]] | |||
| [[Image:Counting rod v-4.png]] | |||
| [[Image:Counting rod v-5.png]] | |||
| [[Image:Counting rod v-6.png]] | |||
| [[Image:Counting rod v-7.png]] | |||
| [[Image:Counting rod v-8.png]] | |||
| [[Image:Counting rod v-9.png]] | |||
|} | |||
== <span id="popular"></span>Числа в самых популярных системах== | == <span id="popular"></span>Числа в самых популярных системах== |
Версия от 02:03, 22 февраля 2022
Дукхалийца терахь хийцало ишта чу метяхь:
- 1 — цхьаъ
- 2 — шиъ
- 3 — кхоъ
- 4 — диъ
- 5 — пхиъ
- 6 — ялх
- 7 — ворхI
- 8 — бархI
- 9 — исс
- 10 — итт
- 11 — цхьайтта
- 12 — шийтта
- 13 — кхойтта
- 14 — дейтта
- 15 — пхийтта
- 16 — ялхийтта
- 17 — вуьрхIийтта
- 18 — берхIийтта
- 19 — ткъаяссна
- 20 — ткъа
- 21 — ткъе цхьаъ
- 22 — ткъе шиъ
- 30 — ткъе итт
- 31 — ткъе цхьайтта
- 40 — шовзткъа
- 41 — шовзткъа цхьаъ
- 49 — шовзткъа исс
- 50 — шовзткъа итт
- 51 — шовзткъа цхьайтта
- 60 — кхузткъа
- 70 — кхузткъа итт
- 80 — дезткъа
- 90 — дезткъа ит
- 100 — бIе
- 120 — бIе ткъа
- 121 — бIе ткъа цхьаъ
- 200 — ши бIе
- 2000 — ши эзар
- 1000 — эзар
- 1000000 — миллион
История
European (descended from the West Arabic) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Arabic-Indic | ٠ | ١ | ٢ | ٣ | ٤ | ٥ | ٦ | ٧ | ٨ | ٩ |
Eastern Arabic-Indic (Persian and Urdu) | ۰ | ۱ | ۲ | ۳ | ۴ | ۵ | ۶ | ۷ | ۸ | ۹ |
Devanagari (Hindi) | ० | १ | २ | ३ | ४ | ५ | ६ | ७ | ८ | ९ |
Tamil | ௧ | ௨ | ௩ | ௪ | ௫ | ௬ | ௭ | ௮ | ௯ |
The first true written positional numeral system is considered to be the Hindu–Arabic numeral system. This system was established by the 7th century in India,[1] but was not yet in its modern form because the use of the digit zero had not yet been widely accepted. Instead of a zero sometimes the digits were marked with dots to indicate their significance, or a space was used as a placeholder. The first widely acknowledged use of zero was in 876.[2] The original numerals were very similar to the modern ones, even down to the glyphs used to represent digits.[1]
By the 13th century, Western Arabic numerals were accepted in European mathematical circles (Fibonacci used them in his Liber Abaci). They began to enter common use in the 15th century.[3] By the end of the 20th century virtually all non-computerized calculations in the world were done with Arabic numerals, which have replaced native numeral systems in most cultures.
Other historical numeral systems using digits
The exact age of the Maya numerals is unclear, but it is possible that it is older than the Hindu–Arabic system. The system was vigesimal (base 20), so it has twenty digits. The Mayas used a shell symbol to represent zero. Numerals were written vertically, with the ones place at the bottom. The Mayas had no equivalent of the modern decimal separator, so their system could not represent fractions.
The Thai numeral system is identical to the Hindu–Arabic numeral system except for the symbols used to represent digits. The use of these digits is less common in Thailand than it once was, but they are still used alongside Arabic numerals.
The rod numerals, the written forms of counting rods once used by Chinese and Japanese mathematicians, are a decimal positional system able to represent not only zero but also negative numbers. Counting rods themselves predate the Hindu–Arabic numeral system. The Suzhou numerals are variants of rod numerals.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
–0 | –1 | –2 | –3 | –4 | –5 | –6 | –7 | –8 | –9 |
Числа в самых популярных системах
West Arabic | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Asomiya (Assamese); Bengali | ০ | ১ | ২ | ৩ | ৪ | ৫ | ৬ | ৭ | ৮ | ৯ |
Devanagari | ० | १ | २ | ३ | ४ | ५ | ६ | ७ | ८ | ९ |
East Arabic | ٠ | ١ | ٢ | ٣ | ٤ | ٥ | ٦ | ٧ | ٨ | ٩ |
Persian | ٠ | ١ | ٢ | ٣ | ۴ | ۵ | ۶ | ٧ | ٨ | ٩ |
Gurmukhi | ੦ | ੧ | ੨ | ੩ | ੪ | ੫ | ੬ | ੭ | ੮ | ੯ |
Urdu | ||||||||||
Chinese (everyday) |
〇 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 |
Chinese (formal) |
零 | 壹 | 贰/貳 | 叁/叄 | 肆 | 伍 | 陆/陸 | 柒 | 捌 | 玖 |
Chinese (Suzhou) |
〇 | 〡 | 〢 | 〣 | 〤 | 〥 | 〦 | 〧 | 〨 | 〩 |
Ge'ez (Ethiopic) |
፩ | ፪ | ፫ | ፬ | ፭ | ፮ | ፯ | ፰ | ፱ | |
Gujarati | ૦ | ૧ | ૨ | ૩ | ૪ | ૫ | ૬ | ૭ | ૮ | ૯ |
Hieroglyphic Egyptian | 𓏺 | 𓏻 | 𓏼 | 𓏽 | 𓏾 | 𓏿 | 𓐀 | 𓐁 | 𓐂 | |
Japanese | 零 / 〇 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 |
Kannada | ೦ | ೧ | ೨ | ೩ | ೪ | ೫ | ೬ | ೭ | ೮ | ೯ |
Khmer (Cambodia) | ០ | ១ | ២ | ៣ | ៤ | ៥ | ៦ | ៧ | ៨ | ៩ |
Lao | ໐ | ໑ | ໒ | ໓ | ໔ | ໕ | ໖ | ໗ | ໘ | ໙ |
Limbu | ᥆ | ᥇ | ᥈ | ᥉ | ᥊ | ᥋ | ᥌ | ᥍ | ᥎ | ᥏ |
Malayalam | ൦ | ൧ | ൨ | ൩ | ൪ | ൫ | ൬ | ൭ | ൮ | ൯ |
Mongolian | ᠐ | ᠑ | ᠒ | ᠓ | ᠔ | ᠕ | ᠖ | ᠗ | ᠘ | ᠙ |
Burmese | ၀ | ၁ | ၂ | ၃ | ၄ | ၅ | ၆ | ၇ | ၈ | ၉ |
Oriya | ୦ | ୧ | ୨ | ୩ | ୪ | ୫ | ୬ | ୭ | ୮ | ୯ |
Roman | I | II | III | IV | V | VI | VII | VIII | IX | |
Shan | ႐ | ႑ | ႒ | ႓ | ႔ | ႕ | ႖ | ႗ | ႘ | ႙ |
Sinhala | 𑇡 | 𑇢 | 𑇣 | 𑇤 | 𑇥 | 𑇦 | 𑇧 | 𑇨 | 𑇩 | |
Tamil | ௦ | ௧ | ௨ | ௩ | ௪ | ௫ | ௬ | ௭ | ௮ | ௯ |
Telugu | ౦ | ౧ | ౨ | ౩ | ౪ | ౫ | ౬ | ౭ | ౮ | ౯ |
Thai | ๐ | ๑ | ๒ | ๓ | ๔ | ๕ | ๖ | ๗ | ๘ | ๙ |
Tibetan | ༠ | ༡ | ༢ | ༣ | ༤ | ༥ | ༦ | ༧ | ༨ | ༩ |
New Tai Lue | ᧐ | ᧑ | ᧒ | ᧓ | ᧔ | ᧕ | ᧖ | ᧗ | ᧘ | ᧙ |
Javanese | ꧐ | ꧑ | ꧒ | ꧓ | ꧔ | ꧕ | ꧖ | ꧗ | ꧘ | ꧙ |
Дополнительные цифры
1 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 500 | 1000 | 10000 | 108 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chinese (simple) |
一 | 五 | 十 | 二十 | 三十 | 四十 | 五十 | 六十 | 七十 | 八十 | 九十 | 百 | 五百 | 千 | 万 | 亿 |
Chinese (complex) |
壹 | 伍 | 拾 | 贰拾 | 叁拾 | 肆拾 | 伍拾 | 陆拾 | 柒拾 | 捌拾 | 玖拾 | 佰 | 伍佰 | 仟 | 萬 | 億 |
Ge'ez (Ethiopic) |
፩ | ፭ | ፲ | ፳ | ፴ | ፵ | ፶ | ፷ | ፸ | ፹ | ፺ | ፻ | ፭፻ | ፲፻ | ፼ | ፼፼ |
Roman | I | V | X | XX | XXX | XL | L | LX | LXX | LXXX | XC | C | D | M | X |
- ↑ 1,0 1,1 O'Connor, J. J. and Robertson, E. F. Arabic Numerals. January 2001. Retrieved on 2007-02-20.
- ↑ Bill Casselman. All for Nought . Feature Column. AMS (February 2007).
- ↑ Bradley, Jeremy How Arabic Numbers Were Invented . www.theclassroom.com. Дата обращения 22 июля 2020.